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ABSTRACT

A consensus-based algorithm for estimating the current intensity of global tropical cyclones (TCs) from

meteorological satellites is described. Themethod objectively combines intensity estimates from infrared and

microwave-based techniques to produce a consensus TC intensity estimate, which is more skillful than the

individual members. The method, called Satellite Consensus (SATCON), can be run in near–real time and

employs information sharing between member algorithms and a weighting strategy that relies on the situa-

tional precision of eachmember. An evaluation of the consensus algorithm’s performance in comparison with

its individual members and other available operational estimates of TC intensity is presented. It is shown that

SATCON can provide valuable objective intensity estimates for poststorm assessments, especially in the

absence of other data such as provided by reconnaissance aircraft. It can also serve as a near-real-time es-

timator of TC intensity for forecasters, with the ability to quickly reconcile differences in objective intensity

methods and thus decrease the uncertainty and amount of time spent on the intensity analysis. Near-real-time

SATCON estimates are being provided to global operational TC forecast centers.

1. Introduction

The surveillance of tropical cyclones (TCs) by me-

teorological satellites has essentially mitigated the

problem of detection. The global tropics are routinely

scanned by a constellation of geostationary (GEO)

and polar-orbiting platforms with increasing frequency

and by sensors with improved spatial and spectral

sampling. The location, genesis, occurrence and dissi-

pation of TCs can be qualitatively tracked and cata-

loged via a myriad of multispectral imagery.

It is somewhat more difficult to estimate the current

intensity [CI; which can be minimum sea level pressure

(MSLP) or maximum sustained (1min) near-surface

(10m) winds (MSW)] of TCs from space-based plat-

forms. The analysis of TC cloud patterns from infrared

(IR) imagery can be done subjectively using trained

analysts and empirically based rules. The longstanding

Dvorak technique (Dvorak 1975, 1984) has been employed

at operational TC centers for many decades and is

heavily relied upon for analyzing the CI and anchor-

ing TC intensity catalogs (‘‘best tracks’’) in the ab-

sence of in situ intensity observations. Even novice

analysts can estimate the CI with a fair amount of

accuracy as evidenced by crowdsourcing strategies

(Hennon et al. 2015). However, IR-based cloud pattern

recognition methods have their limitations (Velden

et al. 2006b; Knaff et al. 2010) due to inherent sub-

jectivity in the interpretation of the imagery and

constraints on the ability to view organized convective

structure underneath the typically large and dense TC

cirrus canopy. Techniques that utilize cloud-penetrating

microwave (MW) sensors can help in this regard

(Brueske and Velden 2003; DeMuth et al. 2004; Bankert

and Cossuth 2016; Jiang et al. 2019), but these methods

also have their strengths and weaknesses.

Accurate estimates of the CI are important for several

reasons: 1) The CI is the starting point of the operational

TC forecast process; 2) It is one of the primary input

variables used to initialize both dynamical and statistical

TC forecast models; and 3) TC climatologies and trends

rely on accurate best-track intensities. Forecasters (or

best-track analysts) often face the problem of concur-

rent satellite-based CI estimates that exhibit a large
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degree of spread/uncertainty. To deal with this, an often-

used conservative approach is to take the mean of the

estimates (simple consensus). However, a ‘‘smarter’’

consensus method that further reduces the CI estimate

uncertainty based on the situational performance of

each consensus member is desirable.

In this paper, we report on the development of a

consensus model to estimate TC CI from satellite-based

methods first proposed in Velden et al. (2004) and

(2006a). The approach draws on several independent

and objectivemultispectral techniques that are routinely

available and estimate the CI of TCs from satellites.

These techniques are carefully characterized by situa-

tional performance to develop a weighted consensus

algorithm that exploits the advantages of each individual

technique. Called Satellite Consensus (SATCON), the

algorithm can operate in near–real time, and it will be

shown that SATCON CI estimates can notably improve

upon estimates provided by the individual members

and a straight average of those estimates, and are com-

petitive with existing traditional approaches such as the

Dvorak technique.

The SATCONmethod is described in section 2, along

with a brief review of the individual objective TC in-

tensity estimation techniques that are currently used in

the consensus approach. SATCON performance results

are shown in section 3, and the tendencies are discussed

further with case study examples in section 4. Section 5

summarizes the findings and looks to the future with

promising new satellite observations and novel methods

to interrogate that data.

2. SATCON method and model members

The concept of applying a consensus of solutions to a

problem or forecast is not new. Consensus or ensemble

approaches have been developed for a wide range of

meteorological applications, and they have been shown

to be skillful in TC forecasting for quite some time

(Goerss 2000, 2007; Sampson et al. 2008; Krishnamurti

et al. 1999; Halperin et al. 2017; Simon et al. 2018).

Recent forecast verification reports from the National

Hurricane Center (NHC) routinely find that consensus

models of forecast TC track and intensity yield the best

skill (e.g., Cangialosi 2019). Pertinent to our study sub-

ject, forecasters at operational TC centers often take a

simple average of divergent Dvorak CI estimates con-

currently available from multiple agencies to assess the

final CI in their bulletins and best tracks.

In this section, we describe a situationally weighted,

variable (two or more members depending on availabil-

ity) consensus method designed to retrieve a final ‘‘best

estimate’’ of TC CI from several near-simultaneous

objective (fully automated) satellite-based CI tech-

niques. The current configuration of SATCON in-

cludes members frommature and operationally tested

objective algorithms that are briefly described below.

Although it is certainly conceivable that the tradi-

tional analyst-based Dvorak estimates could be en-

trained into SATCON, for the purposes of this study

we evaluate SATCON as an independent aid to com-

plement and compare with the operational Dvorak

estimates. As will be discussed in the last section, other

existing and emerging new methods to estimate TC

intensity from a growing suite of advanced satellite-

based sensors could be candidates for becoming future

SATCON members.

a. Current SATCON members

Table 1 lists the current suite of sensors and satellites

that make up the members of SATCON. A brief de-

scription of each current (as of early 2020) SATCON

member is given below.

1) THE ADVANCED DVORAK TECHNIQUE (ADT)

The ADT is a computer-based algorithm designed to

estimate the intensity of TCs using geostationary satel-

lite IR imagery. It is employed by most operational TC

analysis and forecasting centers worldwide to aid in

determining the intensity of TCs, especially in oceanic

basins where in situ measurements are not available. The

initial versions of the algorithm (Olander and Velden

2007) were designed to closely mimic the Dvorak tech-

nique, which requires a trained analyst to apply pattern-

matching and classification schemes to satellite imagery

to estimate CI (Fig. 1). The primary goals of these early

algorithm versions were to achieve the level of perfor-

mance of the Dvorak technique while eliminating some

of the inherent subjectivity through automation.

Since Olander and Velden (2007) first documented

the ADT, development has continued in response to

user feedback, new science, and improvements in

satellite sensors. The enhancements include algorithm

functionality improvements and an expansion of ca-

pabilities and precision (Olander and Velden 2019).

In brief, the most notable advancements include: 1)

finer tuning of the algorithm regression equations to

aircraft-based TC intensity estimates using an ex-

panded development sample, 2) the incorporation of

satellite-based MW information into the intensity

estimation scheme, 3) more sophisticated automated

TC center-fixing routines, 4) adjustments to the in-

tensity estimates for subtropical systems and TCs

undergoing extratropical transition, and 5) addition

of a surface wind radii estimation routine that is based

on Knaff et al. (2016).
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The ADT algorithm is now operationally imple-

mented and supported by NOAA/NESDIS, and has

become an established tool for providing real-time,

objective TC intensity guidance at operational TC

centers around the globe. Since the source imagery

is provided by operational geostationary satellites,

ADT CI estimates are nominally output and made

available to SATCON every 30min for active sys-

tems designated as TCs by Tropical Cyclone Regional

Specialized Meteorological Centers or the Joint

Typhoon Warning Center. For further details on the

ADT and its performance results, see Olander and

Velden (2019).

2) MEMBERS BASED ON LOW-EARTH ORBITER

(LEO) MICROWAVE SOUNDERS

Complementing the geostationary satellite IR-based

Dvorak and ADT approaches to estimating TC CI,

many of the available meteorological LEO satellites

offer instruments that sense in the MW. With the

ability to penetrate the central dense overcast often

associated with TCs, the MW sensors offer unique

information on the TC thermal and convective structure,

which through empirical algorithms (described below), can

estimate intensity. The independent nature of the MW

structure observations versus the IR-based cloud

pattern-recognition methods is ideal for consensus-

based approaches. The downside is that the LEO

satellites only provide sporadic spatiotemporal cov-

erage over a TC, which is partially mitigated by a

healthy operational fleet at present. Although this

fleet is dwindling (see Table 1), it is hoped that future

constellations of ‘‘smallsats’’ [e.g., Time-Resolved

Observations of Precipitation Structure and Storm

Intensity with a Constellation of Smallsats (TROPICS);

Blackwell et al. 2018] will alleviate the temporal

coverage issue.

There are several MW sounder-based methods to

estimate TC intensity that are currently employed in

the SATCON. They all share the fundamental con-

cept of observing the upper-tropospheric thermal

(warm) anomaly in the TC core region (Fig. 2), and

relating its strength through hydrostatic principles to

the TC center minimum surface pressure from which

the storm’s maximum winds can also be deduced.

There is a reasonable correlation between upper-

tropospheric brightness temperature (Tb) anomalies

observed by the microwave sounders and the TC

surface pressure anomalies. However, none of the

existing microwave sounders can fully resolve the TC

FIG. 1. Infrared ‘‘BD curve’’ enhancement from different stages of Hurricane Maria (2017) development that satellite analysts use for

TC intensity estimation based on the Dvorak technique: (a) tropical depression (estimated maximum winds of 30 kt), (b) tropical storm

(55 kt), (c) hurricane (75 kt), and (d) major hurricane (145 kt). (The satellite imagery is courtesy of the NRL-Monterey tropical cy-

clone site.)

TABLE 1. Suite of current SATCON members as described in the text.

Method Algorithm Channels Satellites Years in use Notes

LEO microwave

sounder based

AMSU 6–8, 16 NOAA-15, -16, -18, -19;

Metop A-B

2006– present 2014: N-16 AMSU-A failure;

2008: Metop-A channel-7 failure

SSMIS 3–5, 17 F16–19 2006–present 2015: F-16 and F-18 failures;

2016: F-19 failure

CIMSS ATMS 7–9 SNPP/N-20 2012–present CIRA ATMS only used for TC

eye . 40 kmCIRA ATMS 1–22

GEO IR imager based Advanced Dvorak

technique

IR-W GOES-13–17;Himawari-7–8;

Meteosat-8–11

2006–present Real-time ADT operates on

latest available operational

GEOs (after commissioning)
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thermal anomaly due to the relatively coarse horizontal

and vertical resolution of their sensors, thereby requir-

ing statistical adjustments to achieve the CI estimates.

The MW sounder-based methods that are currently ac-

tive in SATCON are briefly discussed below.

(i) AMSU

The Advanced Microwave Sounding Unit (AMSU)

flown aboard the NOAA LEO satellite platforms is a

cross-track scanning radiometer that utilizes two in-

struments to measure temperature (AMSU-A) and

moisture (AMSU-B) at vertical resolutions deter-

mined by the weighting functions of each channel. A

regression-based algorithm developed by researchers

at the University of Wisconsin Cooperative Institute

for Meteorological Satellite Studies (CIMSS) utilizes

the aforementioned upper-level Tb anomalies (warm-

est pixel Tb at center of the TC minus an average of

environmental Tb surrounding the TC warm core

at an annulus of 500 km) measured from AMSU-A

channels 6–8 for an initial estimate of the TC MSLP

anomaly (Herndon and Velden 2004). This estimate is

then corrected to account for error sources from fac-

tors such as sensor field-of-view (FOV) position offset

(TC center relative to the nearest sensor footprint

center), undersampling of the warm anomaly due to

the TC eye size relative to the footprint spatial reso-

lution, and location of the TC core within the AMSU-

A scan swath (near-nadir location versus near-limb).

The MSW are then estimated using the derived

FIG. 2. Example of Hurricane Irma (2017) depicted by a LEO microwave sounder showing the typical

signature of the upper-tropospheric warm core (yellow and orange colors): AMSU (a) channel-8 and

(b) channel-7 brightness temperature plots (8C, with 18 contour interval), and (c) resultant vertical cross

section of brightness temperature anomaly derived from multiple channels (0.58 contour interval). (Source:
http://tropic.ssec.wisc.edu/real-time/amsu/.)

1648 WEATHER AND FORECAST ING VOLUME 35

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:04 PM UTC

http://tropic.ssec.wisc.edu/real-time/amsu/


AMSU-based MSLP anomaly, the azimuthal mean

AMSU-B 89-GHz Tb gradient near the TC inner core,

storm translation speed and latitude. Objectively de-

termined eye size estimates used by the AMSU algo-

rithm can come from several sources: output from

the Automated Rotational Center Hurricane Eye

Retrieval (ARCHER) algorithm ( Wimmers and Velden

2010), which employs MW imager channels calibrated to

89GHz, or IR-based estimates (Kossin et al. 2007) that are

output from the ADT when available, or estimates from

operational TC analysis agencies, in that order of priority.

The largest source of error for the AMSU algorithm

CI estimates results from undersampling of the TC

upper-level Tb anomaly. AMSU has the coarsest FOV

resolution of the current MW sounders with 48km at

nadir increasing to more than 100 km at the limb.

Empirically determined bias corrections are applied to

the CI estimates to account for the resolution limitation.

However, the largest CI estimation errors from this

method tend to occur for intense TCs with very small

eye diameters, especially when the storm centers are

located near the edge of the AMSU scan swath (FOVs

adjacent to the swath edge are not used by the algo-

rithm). SATCON is trained to recognize this situation,

and the AMSU algorithm performance tendencies are

built into its weighting scheme described in section 2c.

AMSU-based intensity estimates have been available

since 1998 from NOAA-15 through NOAA-19. As of

early 2020, only NOAA-15, NOAA-18, and NOAA-19

have functioning temperature sounders, and NOAA-19

data are degraded by noise in channel 8. The European

MetOp Series (A-C) also carries an AMSU instrument,

and data fromMetOp-B are currently processed into TC

intensity estimates as well (MetOp-C is being added).

(ii) SSMIS

The Special Sensor Microwave Imager/Sounder

(SSMIS) flown on the U.S. Department of Defense

(DoD) DMSP series of LEO satellites became opera-

tional in 2005 (F-16 satellite) with follow-on missions

including F-17, F-18, and F-19. The primary instrument

difference between the SSMIS and the AMSU is that

the SSMIS employs a conical scanning strategy. This is

advantageous for TC intensity estimation since the

FOV spatial resolution of 37.5 km does not change

across the scan. With an improved sensor spatial res-

olution, the SSMIS is less susceptible than AMSU to

undersampling of the TC upper-level warm anomaly.

The instrument also employs a high-resolution (;14-km

FOV) MW imager channel near 85GHz that provides

important TC structure information such as eye di-

ameter and eyewall strength when interrogated by the

ARCHER algorithm.

The general approach for TC intensity estimation

using the SSMIS is very similar to that of the AMSU

algorithm described above. Unique regressions devel-

oped from SSMIS sounder channels 3–5 (mid- to upper

tropospheric) Tb anomalies are used to estimate an

initial MSLP anomaly, with possible corrections ap-

plied to account for TC size. The estimate of MSW is

regressed from the MSLP anomaly, latitude, and storm

size. The final MSW estimate can include adjustments

based on the eyewall convective vigor as observed by

the ARCHER algorithm organization scores, and to

account for the storm translation speed. As of early

2020, only the F-17 temperature sounder is still oper-

ating, with no MW sounder follow-on missions (DoD)

planned.

(iii) ATMS

The Advanced Technology Microwave Sounder

(ATMS) is the MW sounder for the new-generation

LEO satellites as part of the Joint Polar Satellite System

(JPSS). ATMS is similar to AMSU, with channels and

weighting functions that are nearly identical for the

purposes of TC intensity estimation. The primary im-

provement is a higher-FOV spatial resolution of 32 km

at nadir, making ATMS the highest-resolution MW

sounder (for near-nadir views) currently operating.

There are two methods to estimate TC intensity using

ATMS that are part of the SATCON membership. The

first one was developed at CIMSS and follows the same

general strategy as the AMSU algorithm using the raw

Tb anomalies from channels 7–9 (equivalent to AMSU

channels 6–8) to arrive at an estimate of the TC MSLP

anomaly. Corrections are applied for TC eye size, lati-

tude, and storm size. The MSW estimation uses the

ATMS-derived MSLP anomaly along with TC eyewall

vigor as measured by ARCHER intensity scores, and

the inner core Tb gradient (maximum of either channel

8 or 9).

The second ATMS-based method currently used

in SATCON was developed at the Colorado State

University Cooperative Institute for Research in the

Atmosphere (CIRA) and differs from the CIMSS

approach by using temperature retrievals instead of

the raw Tb. The method was originally developed

using AMSU data (DeMuth et al. 2004). Temperatures

at 23 pressure levels derived from the ATMS retrievals

are used in the TC intensity algorithm, and concurrent

estimates of cloud liquid water are used to correct the

temperature profiles from the effects of rain scattering.

A second correction is applied to account for the effects

of ice scattering, and the hydrometeor-corrected tem-

peratures are then interpolated to a radial grid. Using

global model (GFS) data for boundary conditions,
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a downward hydrostatic integration is performed, a geo-

potential height field is derived and subsequently a 3D

wind field is produced at standard pressure levels for a 128
TC-centered box. A statistical model is used to estimate

TC MSLP and MSW from predictors derived from the

temperature, pressure and wind retrievals. There are 13

predictors for the MSLP estimates and 12 predictors for

the MSW estimates (Chirokova et al. 2017, 2018).

Although the CIRAmethod produces the added benefit

of a 3D wind field, the reliance on model data for the

retrievals and boundary conditions can contribute to

generally higher errors in theMSLP andMSWestimates

when compared with the CIMSS approach.

3) SATCON PRESSURE.WIND MEMBER

An additional member to the SATCON TC MSW es-

timate is provided via a pressure–wind relationship model.

The SATCON TC MSLP estimates (trained on solid ob-

servations from reconnaissance aircraft data and shown to

be highly skillful in section 3) are converted to MSW

using a regression of reconnaissance-based TC MSLP

anomaliesmatched to storm-relativeMSWvalues (motion

component removed). In each case, adjustments to the

MSWaremade to account for storm characteristics such as

latitude, eye size, and motion as further described in the

SATCON method in the next section.

b. SATCON approach

The individual member weights used in the SATCON

process of determining a CI are derived from their re-

spective intensity estimation error distributions (dis-

cussed in the next section), fromwhich eachmember has

situational strengths and weaknesses. The performance

behavior of eachmember can therefore be characterized

into situational bins. For example, intensity estimation

errors for the ADT depend on the objectively deter-

mined IR ‘‘scene type’’ (Olander and Velden 2019). The

ADTmethod tends to perform best when there is a clear

eye present in the IR imagery (EYE scene). However,

the performance can be degraded when a TC eye is not

easily resolvable in the IR (eye is too small or partially

obscured by clouds), or when a TC encounters strong

vertical wind shear (SHR scene). The MW sounder–

based methods have errors that are correlated with the

sensor FOV resolution and scan geometry with respect

to storm eye size and location, respectively. In smaller

storms or TCs with small eyes, the localized TC warm

anomaly will not be fully resolved or the competing

effects of eyewall hydrometeor attenuation (cooling)

can lead to increased uncertainties in the representa-

tion of the anomaly, and hence the intensity estimates.

SATCON makes use of this situational information to

optimally weight all of the available intensity estimates

into a single superior consensus estimate. Unique

performance characteristics exist for the two TC in-

tensity metrics, MSLP and MSW, resulting in differ-

ent SATCON weighting schemes for each metric.

Another element of the SATCON process involves

cross-sensor information sharing. Each SATCON mem-

ber contains unique parametric information that can be

used by the other coincident members to assess the sit-

uational bins and possibly adjust the intensity estimates.

For example, the ADT produces estimates of TC eye

size when an eye is distinguishable in the IR (Kossin

et al. 2007). Because the MW-sounder methods can

suffer from undersampling issues when the TC eye di-

ameter is less than ;50km, the ADT eye size can be

used to adjust the estimates accordingly. Conversely, the

latest version of the ADT (version 9.0) makes use of

input from passive MW sensors in the 85–92-GHz range

when available using theARCHERalgorithm (Wimmers

and Velden 2010). ARCHER estimates TC eye size and

position in addition to eyewall vigor and completeness

(Fig. 3). These parameters are used to create TC orga-

nization ‘‘scores’’ that are used as input to the ADT

during cases when the ADT intensity may have a ten-

dency to plateau prior to eye emergence in the IR. The

CIMSS MW-sounder methods use the 85–92-GHz im-

agery and ARCHER analyses to determine FOV posi-

tion offsets noted earlier, and this information can also

be used to adjust the CIRA ATMS estimates. TC eye

size estimates from ARCHER can also be used by the

CIMSS MW-sounder-based methods to account for

undersampling (in the absence of IR eye size informa-

tion). Although ARCHER is not an explicit member of

the SATCONmodel, it can provide integral input to the

SATCON process.

Additional sources of input to the SATCON pro-

cess can come from operational TC centers via the

Automated Tropical Cyclone Forecasting system (ATCF;

Sampson and Schrader 2000) and include the environ-

mental pressure used in the pressure.wind member, as

well as storm motion. Small adjustments can be made to

the final estimated MSW values for storms that signifi-

cantly deviate from an average TCmotion of about 11 kt

(1 kt’ 0.51m s21) using the formulation from Schwerdt

et al. (1979).

c. SATCON weighting scheme

All of the above factors can lead to empirically de-

termined adjustments to the individual member inten-

sity estimates of CI prior to producing a SATCON

estimate. The estimates are then combined into a single

SATCON CI estimate using appropriate weights based

on situational performance as discussed below. Separate

weights are used for estimating MSLP and MSW since
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they can yield different situational error characteristics.

At least two coincident members must be available to

produce a SATCON estimate (the ADT is always one

member), but relationships are determined for up to

four coincident (within 2 h of each other) estimates.

The actual weights used by SATCONare based on the

root-mean-square errors (RMSE) for intensity esti-

mates of the individual members in given situations. For

example, Fig. 4 shows typical MSW RMSE errors for

SATCON members in given scenarios. From the top

row of Fig. 4 it can be seen that the ADT performs

comparatively better with ‘‘eye’’ scene types than other

classifications. The bottom row of Fig. 4 show examples

of TCs in 89GHz imagery along with the location of

the more coarse resolution MW sounder scan position

(FOV) used to determine the inner core thermal

anomaly strength and produce the TC intensity esti-

mate. Three scenarios are shown. In Fig. 4d, the TC eye

is large and the sounder core FOV position nicely co-

incides with the true TC center. This represents an ideal

scenario for the MW sounder-based methods and the

lower RMSEs reflect this. Figure 4e presents the same

case in which the TC eye is large, however, the MW

sounder core FOV is offset from the true TC position

resulting in some subsampling of the eye warming. The

intensity estimate’s RMSEs in this situation are rela-

tively higher. Finally, Fig. 4f represents a ‘‘worst case’’

situation in which both the TC eye is small (compared to

the MW sounder spatial resolution) and the sounder

core FOV position is offset from the true TC position.

FIG. 3. Example of ARCHER output for Hurricane Dorian (2019) at 0600 UTC 31 Aug. ARCHER objectively

centers and ‘‘scores’’ the organization of the storm in microwave imagery: (a) spiral score, (b) combination score

(spiral plus eyewall ring scores), (c) center position, and (d) final score and diagnostics.
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In this case, the RMSEs are high and would result in

lower weights in the SATCON algorithm.

The members’ RMSEs (and SATCON weights) are

determined from a large development sample con-

sisting of TC intensity estimates from all input mem-

bers. For purposes of training the model with solid

verification, the development sample only includes

cases when near-coincident aircraft reconnaissance

data are available within 63 h of the SATCON esti-

mate (MSLP from dropsondes; MSW from agency

best track). This includes cases from 2006 to 2014

(AMSU and SSMIS from 2006 to 2014; ATMS from

2012 to 2014) in the Atlantic Ocean, eastern-central

North Pacific Ocean, and (a few from the) western

North Pacific (field experiment aircraft data) TC basins.

The SATCON weights are proportional to the mem-

ber RMSE values for given scenarios, and an intensity

estimate is derived from a set of equations depending on

the number of available members. For example, the

three-member equation is
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whereWn is the weight of themember n (RMSE) andEn

is the intensity estimate of member n. The member

weights are the situational RMSE values for each of the

members used to create the estimate. The formulation

FIG. 4. Example weighting scenarios for selected members of SATCON. (a)–(c) IR images of TCs (courtesy of the NRL-Monterey

tropical cyclone site) and the designated ADT scene types along with the associated MSW RMSE for those scene types. Also shown is

AMSU-B 89-GHz imagery with yellow circles denoting the corresponding sounder scan position used to produce the intensity estimate,

and the associated MSWRMSE for three of the sounder-based methods for each scenario: (d) a scenario for the AMSU-A scan position

and FOVwell within the TC eye, (e) a scenario in which theAMSU-A scan is offset from the TC eye center, and (f) a scenario in which the

TC eye is small relative to the AMSU-A FOV resolution and is also offset from the TC center.
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of the SATCON weighting structure is designed to

apply higher weights to themember with a situationally

dependent, statistically determined superior perfor-

mance (of the available members). For example, ifE3 is

the best-performing member in a given situation, the

equation above shows how higher RMSEs (weights)

fromE1 andE2 are applied toE3 to give more weight to

that estimate. Less weight (relatively lower RMSEs) is

applied to the other more uncertain estimates (E1

and E2).

The weighted SATCON MSLP estimate is the fi-

nal value; however, further corrections can be ap-

plied to the SATCON MSW estimate. As noted

earlier, the highly skillful SATCON MSLP estimates

(discussed in section 3) are used to create a new

member for the SATCON MSW estimate: a pressure-

wind-derived MSW estimate. This empirically derived,

regression-based member (not a weighted member

in SATCON) starts with the SATCON estimates of

the MSLP anomaly to estimate the MSW with ad-

justments for storm latitude and motion along with

eye size information provided from the ADT or

ARCHER. The new SATCONMSW estimate is then:

0.75 3 SATCON_MSW 1 0.25 3 P.W_MSW. The

final SATCON estimate of MSW can be further ad-

justed to account for a too-weak bias at the upper end

of the intensity scale (.85 kt), and a too-strong bias at

the beginning stage of TCs (initial ;36 h after first

agency bulletin). These biases (on the order of 10 kt)

were noted after independent performance testing.

d. Near-real-time operability

SATCON has been demonstrated in a near-real-time

mode over all global TC basins for several years by the

algorithm developers at CIMSS (Herndon and Velden

2018). The SATCON intensity estimates are derived at

CIMSS and made available via a dedicated website

interface (http://tropic.ssec.wisc.edu/real-time/satcon),

and distributed to U.S. TC forecast centers via the

ATCF. At the time of this article, the SATCON algo-

rithm and associated members are being transitioned

into a framework that will allow the real-time pro-

cessing to take place in an operational environment

such as at the National Hurricane Center. Similarly, the

DoD is also aiming to make it operationally available

to the Joint Typhoon Warning Center. In the mean-

time, the near-real-time SATCON estimates will con-

tinue to be provided at CIMSS, at least until the

operational transition is completed.

The TC intensity estimates from SATCON are lim-

ited to times when estimates from more than one

member are available. The ADT outputs real-time es-

timates every 30min, but the LEO member estimates

are only available when one of the LEOs overpasses a

TC and the storm core is reasonably covered (swath limb

overpasses are not used). Another limitation for real-

time use is that the LEO data can take time to be

downloaded from the satellite, processed into Tb by the

supporting agency, and distributed into user-ready files.

This delay is typically 1–4 h after the overpass, meaning

the SATCON estimates can become near–real time

when they are finally made available to operational

users. To partially ameliorate this time lag, the real-time

graphical SATCON displays on the CIMSS site will

extrapolate forward the sounder-based intensity esti-

mates up to 2 h to match a more current ADT estimate.

Despite these limitations, our experience in work-

ing with operational forecasters is that the sporadic

and sometimes delayed SATCON intensity estimates

can still be very useful if they are available within their

current 6-h forecast cycle, particularly given the SATCON

estimates can be higher precision than other available

satellite-based estimates (discussed in sections 3 and 4).

Especially during active TC periods, SATCON can

provide the analyst with the ability to quickly reconcile

differences in objective intensity methods and serve

as a comparative guidance tool for evaluating various

TC intensity estimates.

e. Use in poststorm analyses

Another important way in which SATCON estimates

can contribute to TC intensity analysis is in poststorm

assessment and ‘‘best track’’ procedures. No longer

limited by operational constraints such as data latency,

the SATCON intensity estimates can be fully employed

in themore rigorous postanalysis process of defining and

archiving the final TC intensity record. In addition to

actual SATCON estimates when LEO MW-sounder

passes are available, the model also calculates interpo-

lated MW-based intensity estimates between the tem-

porally sporadic LEO observations (typically 2–5 h).

These interpolated values are matched up with the

routinely available ADT estimates at 30-min intervals

to produce interpolated SATCON estimates. These

30-min estimates are stored in the SATCON storm

history file and result in a much smoother transition

between SATCON estimates for postanalysis purposes.

In addition to the SATCON deterministic estimates,

the CIMSS SATCON site displays statistically based,

two-standard-deviation error bounds around the esti-

mates that are dependent on situational performance.

These bounds provide the forecaster/analyst with a

probabilistic tool: Statistically it is highly unlikely that

the true TC intensity will fall outside of these bounds. In

cases where the working best-track intensity does fall

outside the bounds it may indicate to the forecaster that
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the operational approaches used to arrive at the inten-

sity deserve increased scrutiny. An example would be

cases of rapid intensity changes in which traditional

methods such as the Dvorak Technique may lag the true

intensity.

With regard to the potential use of SATCON esti-

mates in longer-term TC trend studies, a possible lim-

itation is the unavailability of the higher-resolution

MW-sounder based estimates prior to 1998, and the

nonuniformity of available estimates after that time.

Lower-spatial resolution MW sounders were available

prior to the launch of the first AMSU in 1998, but the

effectiveness in being able to resolve TC warm cores

was much more limited. From 1998 onward, the AMSU

estimates became available along with the SSMIS in

2005 and the ATMS in 2012, but with undesirable (for

trend analyses) heterogeneous sampling during this

period as new satellites/instruments were added.

3. SATCON performance results

As noted earlier, the SATCON model is trained on a

development sample consisting of TC intensity estimates

from all inputmembers and when aircraft reconnaissance

is available within 3h of the SATCON estimate. This

includes a large sample of cases from 2006 to 2014

(AMSU and SSMIS from 2006 to 2014, ATMS from 2012

to 2014) in the Atlantic, eastern-central Pacific, and a few

cases in the western Pacific (field experiment aircraft

data) TC basins. Tables 2 and 3 show the dependent-

sample performance statistics for estimates of MSW (vs

reconnaissance-aided best track) and MSLP (vs recon-

naissance dropsondes), respectively. In the aggregate, the

SATCON estimation errors are significantly lower than

the errors of its individual members in all error metrics.

As an independent test of the algorithm’s perfor-

mance, SATCON was run in near–real time at CIMSS

during the 2015–19 TC seasons to simulate operational

constraints. The intensity estimates were compiled and

compared to those of its coincident individual mem-

bers, and also to operational analyst-based Dvorak

technique estimates that were available and coincident.

As before, the comparisons shown in the tables below

consist of a homogeneous sample of cases validated

against reconnaissance-measured MSLP or best-track

MSW coincident with reconnaissance (63 h). This

requirement necessarily restricts the validation to

mainly Atlantic TCs with a few eastern-central Pacific

matches.

The comparisons presented in Tables 4–7 represent the

results of the independent validation and confirm that

SATCON notably outperforms its individual objective

satellite-based members in all the statistical metrics pre-

sented. In Tables 6 and 7, the SSMIS and the ATMSMW

sounder estimates are combined since their error char-

acteristics and situational behaviors are similar. The

largest SATCON MSW underestimate error in the sam-

ple is 30kt too weak that occurred during Eastern Pacific

Hurricane Patricia (2015) which had a tiny but very in-

tense core. The largest overestimate is 30kt too strong for

Atlantic Hurricane Maria (2017), when Maria’s actual

maximum winds were as much as 20–30kt lower than

what would be derived from a standard pressure-wind

relationship. This is mainly due to the expansion of the

hurricane’s circulation as it moved into higher latitudes.

The largest SATCON MSLP errors in the sample are

32hPa too weak (Patricia) and 17hPa too strong for

Atlantic Hurricane Matthew (2016).

Note the weak biases in the MSW metric that appear

in this sample for all of the members. This bias was not

TABLE 2. Performance of SATCON TC MSW estimates (kt) compared with coincident individual member estimates, verified against

reconnaissance-aided best-track MSW for the development sample of cases during 2006–14. The AMSU and SSMIS/ATMS are inter-

polated to times of ADT estimates.

N 5 3167 SATCON MSW ADT MSW AMSU MSW SSMIS/ATMS MSW

Bias 0.1 0.9 21.4 21.6

Absolute avg error 7.2 9.8 9.6 9.2

RMSE 9.0 12.0 12.3 11.3

TABLE 3. Performance of SATCONTCMSLP estimates (hPa) comparedwith coincident individual member estimates, verified against

reconnaissanceMSLP data for the development sample of cases during 2006–14. TheAMSU and SSMIS/ATMS are interpolated to times

of ADT estimates.

N 5 3167 SATCON MSLP ADT MSLP AMSU MSLP SSMIS/ATMS MSLP

Bias 0.1 20.8 21.1 21.5

Absolute avg error 3.9 7.5 4.7 5.9

RMSE 4.9 9.3 6.3 8.0
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present in the development sample, and does not

have a counterpart in the MSLP metric. It is particu-

larly striking at higherMSW speeds. It is hypothesized

that the increased use of the Stepped Frequency

Microwave Radiometer (SFMR; Uhlhorn et al. 2007)

surface wind estimates (now available from all recon-

naissance aircraft) in the NHC best-tracking procedure

may be contributing to this particular attribute. It has

been noted that SFMR wind speeds are often higher

than other aircraft estimates (NHC storm reports). At

the time of this article (early 2020), the issue is being

addressed by NHC and SFMR personnel, and a recali-

bration and validation effort is underway (Klotz andNolan

2018; M. Brennan, NHC, personal communication).

SATCONalso performs better than a simple consensus

(straight average) of the individual members, generally

by about 10%–15%. This indicates that the situational

adjustments, information sharing, and weighting logic in

the SATCON model are making a positive impact.

It is also informative from a user perspective to break

out the SATCON estimation errors by TC intensity bins

in order to assess estimate confidence at various storm

intensities (Fig. 5). In general, SATCON tends to have

small MSW estimate biases except in the lowest and

highest intensity bins. For weak-stage storms (MSW ,
45kt), SATCON tends to be a little too strong, primarily

due to a high bias in the MW sounder methods at these

intensities (not shown), and corrections for this bias are

being explored. A notable weak bias exists for Category

5 TCs, and is also present with the ADT. A higher

percentage of tiny (unresolved) eyes at these strong in-

tensities could be a cause. However this bias could also

at least in part reflect the SFMR issues noted above, as

all of the individual satellite-based methods are trained

on best tracks prior to 2015 that were less influenced by

the availability of SFMR MSW estimates.

In terms of RMSE, SATCON bests the ADT in all

intensity bins except for the weakest storms due to the

aforementioned SATCON high bias. The SATCON

RMSE profile across the intensity bins is reasonably

flat, except for the category-5 storms (but still signifi-

cantly better than the ADT and the other members not

shown). This implies a high confidence in the SATCON

estimates over the individual members for all TC in-

tensities, with the possible exception of the weakest

bin. However, it will be shown in the next section that

individual TC intensity maxima, especially when they

are strong with sharp peaks, can be underestimated by

the consensus approach.

SATCON is also competitive with the coincident

operational Dvorak-based estimates from multiple

agencies, even after they are averaged as in Fig. 5.

Only with the bin of hurricane category 1–2 do the

Dvorak estimates show a slightly lower RMSE. This is

an important result in that it indicates the multispec-

tral information provided by the objective methods is

adding skill beyond that of the Dvorak method when

properly utilized in the SATCON process. Note that

the operational Dvorak estimates also exhibit a no-

table weak bias in the strongest intensity bins.

Although the SATCON performance results pre-

sented above are primarily restricted to TC basins

with reconnaissance aircraft data due to that being a

validation requirement, there is reason to believe the

SATCON performance extends to other TC basins as

well. In 2008 and 2010, the U.S. Office of Naval

Research in collaboration with international partners

supported field experiments to study aspects of west-

ern North Pacific TC structure (Elsberry and Harr

2008). Aircraft reconnaissance missions were flown

into several TCs during the field campaigns, permit-

ting the opportunity to validate new satellite-based

TABLE 4. Performance of SATCON TC MSW estimates (kt) compared with coincident ADT and AMSU estimates, verified against

reconnaissance-aided best-track MSW for an independent sample of cases from 2015 to 2019.

N 5 568 SATCON MSW AMSU MSW ADT MSW Simple avg MSW

Bias 21.5 23.2 24.2 23.7

Absolute avg error 7.6 9.5 10.8 8.6

RMSE 9.8 12.3 12.9 11.0

TABLE 5. Performance of SATCON TC MSLP estimates (hPa) compared with coincident ADT and AMSU estimates, verified against

reconnaissance-observed MSLP for an independent sample of cases from 2015 to 2019.

N 5 568 SATCON MSLP AMSU MSLP ADT MSLP Simple avg MSLP

Bias 0.3 2.2 20.6 0.8

Absolute avg error 4.9 6.3 7.0 5.5

RMSE 6.5 8.6 9.6 7.5
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TC intensity methods in a basin other than the Atlantic

or east-central Pacific. And although the number of

verification cases is relatively small, the TC intensities

observed during the reconnaissance missions did span a

wide range of 35–160 kt (MSW). Validation statistics

for this small western North Pacific sample (Table 8)

again show that SATCON (in this case the ADT plus

AMSU) intensity estimation errors are lower on aver-

age than the available Dvorak estimates.

Other testimony comes from operational TC centers

that have been experimenting with the near-real-time

estimates produced by CIMSS. The JTWC TC fore-

casters (with an area of responsibility outside the

Atlantic and east-central Pacific) now include SATCON

in their daily in-house analysis and public bulletin dis-

cussions. The Australian Bureau of Meteorology TC

forecasters, who have provided excellent feedback during

the development and testing phases of SATCON as it

pertains to their region, routinely cite the SATCON es-

timates as part of their operational CI analysis and bul-

letin information.

4. Examples and discussion

In this section we present examples of TC cases that

illustrate the situational performance of SATCON.

Although a full tutorial on the use of SATCON in-

tensity estimates is not possible here, some discussion is

given to scenarios that lend higher or lower confidence

in the estimates.

The first example is Atlantic Hurricane Florence

(2018) presented in Fig. 6, which illustrates a case of a

storm undergoing significant periods of intensification

and weakening. There is generally good agreement

between the SATCON MSW estimates and the NHC

best-track intensity throughout the period despite

considerable variance in the individual objective in-

tensity estimates at times. This implies that there is

ample situational independence between the objec-

tive estimation methods to allow the SATCON model

weights to resolve the differences. Of particular note

is the correct identification of both rapid intensifica-

tion and weakening by SATCON (the second phase is

confirmed by reconnaissance data after 8 September),

which is a stringent test for consensus-based ap-

proaches. Also in this case, the maximum intensity

peaks are relatively well-captured. On the other hand,

a short-lived rapid intensification (RI) depicted by

SATCON early on 3 September is amplified relative

to the NHC best track. This RI is supported by a

couple higher MW sounder estimates as well as rap-

idly increasing ADT values, while the operational

Dvorak estimates increased by a more modest 5–10 kt

over 12 h. In this case NHC chose the weaker end of

the estimates, and reconnaissance was not yet avail-

able to verify one way or the other. In practice, and

given the relative independence of the objective

member methods in deducing intensity, there is gen-

erally higher confidence in the SATCON estimates

when there is objective method agreement, and lower

confidence in situations with higher method scatter.

Also, analysts using SATCON in real time should be

wary of a single member estimate causing a significant

SATCON deviation peak (in this case a high AMSU

estimate that is not supported by previous estimates

nor a concurrent SSMIS value that only supports a

lower estimate), and may choose to conservatively

wait for the next estimate to confirm it or reduce

the deviation of the SATCON estimate if used in

postanalysis.

The Florence case also exhibits some behaviors and

uncertainties that can occur with the objective methods

TABLE 6. Performance of SATCON TC MSW estimates (kt) compared with coincident ADT and SSMIS or ATMS estimates, verified

against reconnaissance-aided best-track MSW for an independent sample of cases from 2015 to 2019.

N 5 400 SATCON MSW SSMIS/ATMS MSW ADT MSW Simple avg MSW

Bias 20.9 20.7 23.0 21.8

Absolute avg error 7.5 10.0 10.1 9.1

RMSE 9.5 12.3 12.9 11.2

TABLE 7. Performance of SATCON TCMSLP estimates (hPa) compared with coincident ADT and SSMIS or ATMS estimates, verified

against reconnaissance-observed MSLP for an independent sample of cases from 2015 to 2019.

N 5 400 SATCON MSLP SSMIS/ATMS MSLP ADT MSLP Simple avg MSLP

Bias 0.2 0.3 0.6 0.5

Absolute avg error 4.6 6.5 6.6 5.2

RMSE 6.1 8.6 8.7 6.8
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being considered. For example, the CIMSS ATMS

estimates are generally on the high side during weak

to moderate intensities, and the CIRA ATMS values

are on the weak side during strong intensities. As

noted in section 2, even though the parent instrument

is the same, the methodologies that derive the inten-

sities are different, resulting in contrasting biases. The

SATCON model weighting scheme tries to account

for these method performance behaviors. Another

good example of SATCON’s value occurs during the

intensity valley on 7–10 September, when Florence is

being affected by a period of higher vertical wind

shear and loses its eye structure. As shown in Fig. 4,

the ADT becomes less reliable in these conditions and

thus in this case exhibits a weak bias relative to the

MW sounder-based methods and verifying best-track

estimates. The SATCON weighting scheme makes

allowances for this and draws closer to the sounder

estimates for most of this period.

Figure 7 shows an example of SATCON indicating

rapid intensification well before the operational Dvorak

estimates, and greatly exceeding the JTWC working

(real time) best-track values for western North Pacific

Super Typhoon Halong (11W) in 2014. This case also

highlights the potential usefulness of the 2-sigma (stan-

dard deviation) error bounds around the SATCON

estimates in the CIMSS online displays. On 1 August,

the objective method intensity estimates all increase

rapidly, and the SATCON MSW values become 30 kt

higher than the working best-track estimates that fall

outside the 2-sigma error bounds of SATCON. By

definition this is highly unlikely and this, along with

the congruence of the objective estimates, is an indi-

cation to the forecaster that something may be amiss

with intensity estimation from the Dvorak method in

this situation. In fact, a well-defined eye became ap-

parent in MW imagery (information that was used in

the ADT) but was not yet depicted in IR imagery,

leading to Dvorak estimates that as a result are likely

too weak.

Figure 8 illustrates a case in which SATCON likely

underestimates peak intensity for multiple reasons.

Atlantic Hurricane Danny in 2015 underwent a rapid

rise and fall in intensity, which consensus methods (as

natural averaging algorithms) can struggle with. Coupled

with relatively infrequent MW sounder observations,

FIG. 5. Performance (vs reconnaissance-aided best track) of SATCON MSW (kt) estimates

against subjective Dvorak (average of all agencies) and ADT estimates as a function of TC

intensity (MSW) bins (kt; x axis). Solid lines represent the respective RMSE, and dashed lines

represent the respective bias. The sample is from the 2015–19 independent dataset, with the

number of matches N in each bin indicated at the bottom.

TABLE 8. Performance of SATCON TC MSW estimates (kt)

comparedwith coincident ADTand operational Dvorak estimates,

verified against reconnaissance-aided MSW estimates for a sample

of TC cases from 2008 and 2010 in the western North Pacific.

N 5 35 SATCONMSW ADTMSW DvorakMSW

Bias 21.6 25.3 22.0

Absolute avg error 7.7 11.0 9.4

RMSE 8.9 14.1 12.4
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TC intensity peaks can often occur between SATCON

estimates and therefore are not fully resolved. Danny

was also a very small tropical cyclone with an eye di-

ameter measured by MW imagers via ARCHER of

only 5–10 km around the time of peak intensity. The

very small storm size results in estimates that are too

weak from theMW sounder-based methods even after

appropriate corrections. Even the IR-based methods

(subjective Dvorak and the ADT) struggle with the

period of peak intensity, although the ADT is able to

resolve a small ragged eye for a short time and per-

formed the best. Despite the SATCON weighting

adjustments, the anomalous combination of factors in

this example lead to SATCON underestimates of the

peak intensity.

Note that reconnaissance did not arrive into Danny

until after the peak intensity indicated in the best

track, and MSW estimates from that mission ranged

from 95 to 105 kt. Therefore the 25-kt underestimate

of peak intensity by SATCON may be overstated.

Nevertheless, small, strong TCs with sharp intensity

peaks are challenging for all satellite-based methods

and SATCON as well. The Danny case serves as an

example where some knowledge of intensity algo-

rithm shortcomings can be useful in assessing the in-

tensity methods even for algorithms such as SATCON

that in the aggregate are very skillful but may under-

perform in certain storm structures.

One school of thought with consensus-based methods

is why not just improve the individual objective algo-

rithms rather than develop these approaches to derive

better estimates? Though we strongly advocate for

continued satellite-based algorithm development, the

SATCON approach offers some advantages. SATCON

takes the most likely solution that would be derived

from a simple consensus mean value, and improves that

likelihood further by weighting the known attributes of

each member method. It offers a building platform for

making future improvements to satellite-based TC in-

tensity estimation if new instruments or methodologies

become available. Last, and perhaps most important for

use in operational TC forecast environments, it quickly

shares and distills multiple information sources down

to a single value for intensity analysis, with superior

results. This can help to decrease the amount of time

spent on the TC intensity analysis process allowingmore

time for the forecast.

The current membership of SATCON involves exclu-

sively objective-based methods in order to provide inten-

sity guidance to forecasters distinct from the subjective

Dvorak technique. Yet this does not preclude the pos-

sible incorporation of operational Dvorak estimates into

SATCON. In fact, experimental testing with limited

weighting treatment has shown slightly better results are

achieved with the inclusion of these estimates, but it

is not clear if this result could be aided by a Dvorak

FIG. 6. Interpolated SATCON intensity estimates (MSW; thick solid red line) for Hurricane

Florence (2018). Also plotted are the individual objective member estimates, the NHC Final

best track (black line), the Dvorak operational estimates, and the SATCON 2-sigma confi-

dence limits (thin solid red lines).
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influence on the verifying best-track records. TheDvorak

estimates will also have many error characteristics that

are similar to the ADT, thereby limiting the additional

independent information that would be supplied to

SATCON. Nevertheless, this option could be developed

for poststorm analysis and best-track practices.

5. Summary and future directions

SATCON is a weighted consensus algorithm designed

to optimize the strengths and minimize the weaknesses

of objective satellite-based approaches to estimate TC

intensity. It can provide the TC forecaster with the

ability to quickly reconcile spread in objective intensity

estimates thus decreasing the amount of time spent on

the analysis of current intensity. Theweighted consensus

approach reduces estimate errors over those of the in-

dividual members, with the individual method weights

in SATCON determined by situational performance.

Although it is shown that SATCON performs well in

estimating TC intensity relative to other satellite-based

methods, there are some limitations especially for real-

time use. The estimates rely on LEO satellite inputs and

thus are not continuous or always timely; 2–6-h time

gaps are not uncommon, and normal latency is 1–4h

after the satellite overpass before the data are available

for an intensity estimate to be derived. In addition, the

fully automated and objectively based algorithm can oc-

casionally need user decision-making in the form of final

quality control, as erroneous estimates can enter the

model due to factors outside of the science algorithms.

Global, near-real-time SATCON estimates have been

produced by the CIMSS developers and demonstrated

to users for about the past 10 years via NOAA and DoD

(Naval Research Laboratory) research and proving

ground efforts. Given the encouraging demonstrated

performance in estimating TC intensity, as of early 2020

the SATCON and associated member algorithms are

being transitioned into a processing framework that will

be supported by U.S. DoD and NWS operational envi-

ronments. It is planned that these eventual operational

SATCON estimates will also be made available to TC

agencies outside the United States, as well as the TC

research community.

The focus of future research will involve the con-

tinued evaluation of cross-platform parameter shar-

ing, the development of quantitative or probabilistic

SATCON estimate confidence indicators, and the

testing/incorporation of potential new members. Other

candidate objective satellite-based methods to esti-

mate TC intensity exist (e.g., Piñeros et al. 2011;

Kishimoto et al. 2013; Ritchie et al. 2014; Jiang et al.

2019; Xiang et al. 2019), and the emergence of Artificial

Intelligence and Machine Learning approaches to TC

FIG. 7. Interpolated SATCON intensity estimates (MSW; thick solid red line) for Super

Typhoon Halong (2014). Also plotted are the individual objective member estimates (ATMS

was experimental at this time and not included in the SATCON estimates), the JTWC best

track (black line), the Dvorak operational estimates, and the SATCON 2-sigma error limits

(thin solid red lines).
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applications is promising (Bankert and Cossuth 2016;

Chen et al. 2018; Pradhan et al. 2018; Wimmers et al.

2019). Upgrades to existing member algorithms, new

satellite data sources, and inclusion of new members

into the consensus will require periodic updates to the

SATCON weighting scheme but will likely lead to

further performance improvements.
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